Projective quantum spaces
نویسندگان
چکیده
منابع مشابه
Projective Quantum Spaces
Associated to the standard SUq(n) R-matrices, we introduce quantum spheres S q , projective quantum spaces CP n−1 q , and quantum Grassmann manifolds Gk(C n q ). These algebras are shown to be homogeneous spaces of standard quantum groups and are also quantum principle bundles in the sense of T. Brzeziński and S. Majid [1].
متن کاملQuantum Dimension and Quantum Projective Spaces
We show that the family of spectral triples for quantum projective spaces introduced by D’Andrea and Da̧browski, which have spectral dimension equal to zero, can be reconsidered as modular spectral triples by taking into account the action of the element K2ρ or its inverse. The spectral dimension computed in this sense coincides with the dimension of the classical projective spaces. The connecti...
متن کاملOrbifold Quantum Cohomology of Weighted Projective Spaces
In this article, we prove the following results. • We show a mirror theorem : the Frobenius manifold associated to the orbifold quantum cohomology of weighted projective space is isomorphic to the one attached to a specific Laurent polynomial, • We show a reconstruction theorem, that is, we can reconstruct in an algorithmic way the full genus 0 Gromov-Witten potential from the 3-point invariants.
متن کاملDirac Operators on Quantum Projective Spaces
We construct a family of self-adjoint operators DN , N ∈ Z, which have compact resolvent and bounded commutators with the coordinate algebra of the quantum projective space CPq, for any ` ≥ 2 and 0 < q < 1. They provide 0-dimensional equivariant even spectral triples. If ` is odd and N = 1 2 (` + 1), the spectral triple is real with KO-dimension 2` mod 8.
متن کاملBundles over Quantum RealWeighted Projective Spaces
The algebraic approach to bundles in non-commutative geometry and the definition of quantum real weighted projective spaces are reviewed. Principal U(1)-bundles over quantum real weighted projective spaces are constructed. As the spaces in question fall into two separate classes, the negative or odd class that generalises quantum real projective planes and the positive or even class that genera...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Letters in Mathematical Physics
سال: 1995
ISSN: 0377-9017,1573-0530
DOI: 10.1007/bf00750759